Static Bayesian Modeling of Biological Time-Series Data
نویسنده
چکیده
Recent research into reconstructing biological networks has examined the use of dynamic Bayesian networks to model time-series data. While intuitively appealing, dynamic Bayesian network modeling makes assumptions about the properties of time-series data which may not hold for sparsely sampled datasets. This work argues that static Bayesian networks may be a more appropriate model for such datasets. Several exploratory results supporting this argument are presented on datasets previously cited in the dynamic Bayesian learning literature.
منابع مشابه
Determination of the best time series model for forecasting annual rainfall of selected stations of Western Azerbaijan province
Rainfall is one of the most important components of the water cycle and plays a very important role in the measurement of climate characteristic in any area. Limitations such as lack of sufficient information about the amount of rainfall in time and space scale and complexity of the relationship between meteorological elements related to rainfall, causes the calculation of these parameters usin...
متن کاملStochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity
Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...
متن کاملEvaluation of Time Series Patterns for Wind Speed Volatilities in Anzali Meteorological Station
Abstract. One of the major problems in using wind energy is that wind-generated electricity is more unstable than electricity generated by other sources, and therefore integrating wind energy use with traditional power generation systems can be a challenge. This problem can be effectively reduced by having accurate information about the mean and wind speed volatilities. Therefore, in this paper...
متن کاملاستفاده از آنتروپی شانون در پیشپردازش ورودی شبکه بیزین جهت مدلسازی سریهای زمانی
Selecting appropriate inputs for intelligent models is important due to reduce costs and save time and increase accuracy and efficiency of models. The purpose of this study is using Shannon entropy to select the optimum combination of input variables in time series modeling. Monthly time series of precipitation, temperature and radiation in the period of 1982-2010 was used from Tabriz synoptic ...
متن کاملInference and Verification of Probabilistic Graphical Models from High-Dimensional Data
Probabilistic graphical modelling technique has been widely used to infer the causal relations in the network from high-dimensional data. One of the most challenging biological questions is the inference and verification of biological network, for example, gene regulatory network and signaling pathway, from high-dimensional omics data. Conditionally dependent genes and undirected network can be...
متن کامل